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Summarx 

A scaling analysis of the rubber-like elastic behavior of a cross- 

]inked polymer network is presented which incorporates the two most 

salient contributions to the free energy of deformation: the chain 

connectivity of the segments and the restrictions on the chain 

configurations due to entanglements. The affine deformation of the 

junction points is assumed and a tube model is used to discuss the 

deformation dependence of the entanglement constraint parameter. 

Introduction 

A minimal stat ist ical  mechanical model of rubber e last ic i ty  must 

incorporate the two main features of the network chains; the 

connectivity of the chain segments on a global scale and the topological 

entanglement constraints on the chain segments on a local scale. The 

essential physics of these contributions can be determined from a 

scaling type argument. 

The Free Energ~ of an Entangled Network Chain 

A network chain is comprised of N segments and has i ts ends 

attached to separated junction points in the network. The f i r s t  term in 

the chain free energy is due to the connectivity of the segments and is 

given in units of kBT, by the usual Gaussian contribution 

Fconnectivity ~ R2/N (1) 
where R is the chain end-to-end separation. We note that eq. 1 is 

separable into i ts cartesian components. The ~ notation indicates that 

there is a nonuniversal constant of proportionality which is neglected. 
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The second term in the chain free energy arises from the 

confinement of the chain by other chains in the network (1). This can 

be modelled using restoring potentials (1-3), various types of tubes (4- 

10) or obstacle nets. Regardless of the specific model of the 

entanglement constraint, the resulting free energy term takes a 

universal scaling form for strong confinement. The length scales 

I/2 which varies as N 1/2 involved are the average chain dimension, <~2> o , 

in a dense system and the confinement parameter, 6, which in specific 

models represents the tube diameter, the obstacle net spacing or the 

mean segment fluctuation. The main effect of topological constraints is 

to decrease the effective local degrees of freedom of the chain which 

results in an extensive free energy change proportional to N. Since the 

energy is a function of the dimensionless variable <R2>o/~2 the free 

confinement contribution to the free energy equals 

Ftopological ~ N/{ 2 (2) 
We note that this expression also holds for a chain between close 

parallel plates and a chain strongly adsorbed on a surface. I f  the 

confinement occurs in more than one direction, as in a box, then there 

wi l l  be a term having the form of eq. 2 for each direction of 

confinement. The ~ notation indicates the neglect of a nonuniversal 

constant which depends on the details of the confinement model, such as 

the tube geometry or the restoring potential form. 

The free energy of the entangled network chain can be written as 

the sum of the connectivity and topological constraint contributions 

~ (I/N) z Ri2 + N E ~i -2 (3) Fentangled 
chain i=x,y,z i=x,y,z 

where x, y, z are the macroscopic axes of deformation, R i are the 

corresponding components of ~ and { i  is the confinement parameter normal 

to the ith axis and R i .  

The Network Free Ener~x of Deformation 

The total free energy of the network can be written by multiplying 

eq. 3 by v, the number of network chains. The calculation of the 

mechanical response of the network requires assumptions about the 

deformation properties of R i and { i "  For a network that is i n i t i a l l y  

isotropic we assume that the chain vector deforms af f inely 

R i = x i �9 R o (4) 
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We further assume that under deformation the confinement parameter 

changes in a 'scaled affine' manner 

~i = ~i p. Co 
Eq. 5 is introduced by analogy to eq. 4 and presumes that the local 

topological constraints remain symmetric about the macroscopic 

deformation axes. 

(s) 

The network free energy change of deformation is 

AFnetwork ~ (VRo2/N) ~ [~i2-I]  + (vN/~o2) ~ [Xi'2~-I ] 
i=x,y,z i=x,y,z 

(6) 

I t  should be noted that eq. 6 supports the empirically successful 

Valanis-Landel form, F(Xx,X,,,X z ) ~  = ~ ,zf(Xi ). Furthermore, eq. 6 is 1 =x ,y 
a constituitive free energy expression consistent with continuum 

mechanics arguments (11). We now turn to considering the value of ~. 

Discussion 

Determination of the var iat ion of the confinement parameter with 

deformation is a del icate matter. The basic d i f f i c u l t y  is that 

depends on the local properties of the chain, which cannot be adequately 

represented using the Gaussian chain modelo For example, i f  the network 

chains are treated as purely Gaussian random walks, then by dimensional 

analysis (12) ~ varies with density as ~ ~ p-1 and using the analysis in 

refo 2, the modulus varies with density as E ~ p3. The problem is that 

a Gaussian chain is volumeless, whereas a real chain has a hard core 

volume. This basic property should be incorporated into a minimal model 

of rubber e las t i c i t yo  

Edwards (1) and deGennes (2) envision a chain in the bulk as being 

enclosed in a randomly shaped tube, which is depicted schematically in 

Figure 1. Edwards has shown that i f  the tota l  space occupied by the 

tubes surrounding the network chains v~ [L is the chain contour 

length which is proportional to the tube length and d is the tube 

diameter] is taken to completely f i l l  the macroscopic volume of the 

network, then d ~ p-1/2 and using the analysis in refo 2, E ~ p2, which 

is physical ly reasonable. The idea of space f i l l i n g  tubes is especial ly 

plausible in a dense system where the confinement scale is not very 

d i f ferent  from the actual cross-sectional dimension of the chain so that 

the space f i l l i n g  by the tubes derives from the volume occupied by the 



350 

Figure 1. A polymer chain in a random tube. 

J 
Y 

z 

I 

Figure 2. The three-tube model. 
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physical chains. Using this assumption with { equal to d in eq. 6 

results in the prediction that the equilibrium modulus depends on both 

the plateau modulus and the number of network chains. 

This heuristic modelling with the random tube picture can also be 

used to obtain an estimate of B. Imagine decomposing the random tube 

into sections lying along the axes of deformation. A tube section is 

specified by a position vector parallel to an axis. One-third of the 

sections l ie  along a given deformation axis. In the undeformed state, 

the tube sections have length L o and diameter d o . The resulting 'three- 

tube' picture is i l lustrated in Figure 2, which depicts the main 

characteristics of the model: connectivity, confinement and cartesian 

separability. Under deformation, each tube section is taken to deform 

independently so that the length of a tube section along the ith axis, 

L i ,  deforms aff inely. The total lengths of the tubes deform according 

to the same relation. Furthermore, as the length of a section changes, 

i ts diameter, di, is assumed to change so as to preserve the confining 

volume of the tube so that 
+ 2B [L i "  di2]/ [L o. do2] = x i l  = I (7) 

It follows that B = -1/2. The motivation for using the 'constant tube 

volume' assumption is to model the macroscopic incompressibility of the 

network and the physical volume of the chains. Figures 3 and 4 show the 

f i t  of eq. 6 with ~ = -I /2 to experimental data (13,14) which seems 

quite satisfactory, especially in view of the simplicity of the model. 

Other values of ~ are possible i f  the constant tube volume 

requirement is not imposed on the model. As a case in point, the affine 

tube deformation model corresponding to ~ = 1, produces the Mooney- 

Rivlin equation which has some empirical success (13,14). Since our 

derivation of eq. 6 is based on scaling arguments, rather than tubes, 

other confinement models of entangled networks, such as chains on an 

obstacle array, wil l  also show Mooney-Rivlin behavior i f  the constraint 

parameter, such as the obstacle net spacing, is taken to deform 

aff inely. I t  should be pointed out that the B = 0 condition which 

produces the classical phantom chain network result, does not imply the 

absence of entanglements, but only that the global deformation of the 

network does not, on average, alter the local environment. There is 

also a possibi l i ty that B is not universal for all network structures. 
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Figure 3. 
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In conclusion, we have developed an expression for the free energy 

of deformation of a cross-linked polymer network using scaling arguments 

to account for global chain connectivity and local entanglement 

effects. This expression contains a parameter B indicating the 

deformation behavior of the topological constraint parameter. The use 

of a space f i l l i ng  tube model with a constant tube volume deformation 

condition gives B = - I /2.  I t  would be very desirable to treat B as an 

empirical parameter and to determine its value by f i t t ing  eq. 6 to data 

for a variety of network systems, each under several constant volume 

deformation conditions. 

Finally, i t  should be pointed out that the chain confinement 

concept has also been implici t ly used in reptation and retracing models 

of the non-equilibrium mechanical response of cross-linked networks 

(15,16). Two recent reviews of tube concepts in rubber elast ici ty 

(17,18) complement our discussion here. 
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